Microstructure and Mechanical Properties of Cold Rolled AISI 304L and 316L Austenitic Stainless Steels during Reversion Annealing
نویسندگان
چکیده مقاله:
Microstructural evolutions during annealing of cold rolled AISI 304L and AISI 316L stainless steels were studied. Cold rolled AISI 304L alloy was fully martensitic but cold rolled AISI 316L alloy was partially martensitic due to the higher stability of the austenite phase in the latter. During continuous heating to elevated temperatures, the complete reversion of strain-induced martensite at 750°C and an average austenite grain size of 0.4 µm was achieved in AISI 304L alloy. However, the complete reversion in AISI 316L alloy was observed at 800°C, but the recrystallization of the retained austenite was achieved at 900°C. The latter requirement for the formation of an equiaxed microstructure resulted in a much coarser average austenite grain size (2.3 µm). Annealing up to higher temperatures resulted in the grain growth of both alloys. The transformation-induced plasticity (TRIP) effect was found to be a major factor in dictating the mechanical properties, where lower stability of the austenite phase and the pronounced TRIP effect in AISI 304L alloy resulted in higher ductility in the tension test, higher friction stress in the Hall-Petch plot for hardness, and deeper dimples on the fracture surface.
منابع مشابه
Transient liquid phase bonding of AISI 304L stainless steels with the austenitic and martensitic microstructures
In the present study, the effect of time and base metal microstructure on the Transient Liquid Phase (TLP) bonding of 304L stainless steel was studied. TLP was performed at 1050 0C for 5 and 60 minutes on the coarse grain austenitic and martensitic microstructure using BNi-2 interlayer. To prepare martensitic microstructure, as-received 304L was rolled at -15 0C up to 80% rolling reduction. TEM...
متن کاملEffects of Martensite Reversion Parameters on the Formation of Nano/ultrafine Grain Structure in AISI 304L Stainless Steel
Formation of nano/ultrafine grain structure in AISI 304L austenitic stainless steel through the martensite reversion treatment was studied. The solution annealed specimens were cold rolled up to 95 % thickness reduction at -15°C. The cold-rolled specimens were subjected to reversion annealing treatment at the temperature range of 700-1000 °C for 10–150 min. Microstructural evolutions were analy...
متن کاملTransient liquid phase bonding of AISI 304L stainless steels with the austenitic and martensitic microstructures
In the present study, the effect of time and base metal microstructure on the Transient Liquid Phase (TLP) bonding of 304L stainless steel was studied. TLP was performed at 1050 0C for 5 and 60 minutes on the coarse grain austenitic and martensitic microstructure using BNi-2 interlayer. To prepare martensitic microstructure, as-received 304L was rolled at -15 0C up to 80% rolling reduction. TEM...
متن کاملMartensite phase reversion-induced nano/ ultrafine grained AISI 304L stainless steel with magnificent mechanical properties
Austenitic stainless steels are extensively used in various applications requiring good corrosion resistance and formability. In the current study, the formation of nano/ ultrafine grained austenitic microstructure in a microalloyed AISI 304L stainless steel was investigated by the advanced thermomechanical process of reversion of strain-induced martensite. For this purpose, samples were subjec...
متن کاملThe Influence of Homogenization and Solution Annealing Process on the Microstructure and Mechanical Properties of 1.4470 Ferritic-austenitic Stainless Steel
In the present research, the effect of the homogenization process and annealing temperature were investigated for the 1.4470 ferritic-austenitic stainless steel in the as-cast condition. In this regard, microstructural evolutions, hardness, and impact energy of the steel was evaluated with different heat treatment conditions. The results show that the minimum volume fraction of austenite phase ...
متن کاملAustenite Stability during Nanoindentation of Ultrafine and Coarse Grained AISI 304L Stainless Steels
In the present study, the effect of grain size on the austenite stability was studied by nanoindentation tests in a 304L stainless steel. Thermomechanical processing based on cold rolling and annealing was used to produce two different types of austenite: ultrafine grained (UFG) austenite with the average grain size of 0.65 μm and coarse grained (CG) austenite with the average grain size of 12 ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 1
صفحات 92- 99
تاریخ انتشار 2020-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023